Analytical ultracentrifugation

Olwyn Byron

School of Life Sciences College of Medical, Veterinary and Life Sciences

10001 100/1

R 🛲 🏠

University of Glasgow, Scotland UK

Outline

- AUC background
- How AUC experiments are performed
- Data analysis
- Example: simple model-independent investigation of a hetero-association
- Detergent solubilised systems
- Hydrodynamic bead modelling (HBM)
- Example: oligomerisation of synthetic polyvalent integrin $\alpha_5 \beta_1$ ligands

Outline

- AUC background
- How AUC experiments are performed
- Data analysis
- Example: simple model-independent investigation of a hetero-association
- Detergent solubilised systems
- Hydrodynamic bead modelling (HBM)
- Example: oligomerisation of synthetic polyvalent integrin $\alpha_5 \beta_1$ ligands

Questions that can be answered by AUC

- Is sample heterogeneous?
 - in molecular weight, shape, or both?
 - does heterogeneity depend on pH, salt, buffer, etc?
- Is sample pure enough for MX, SAXS, SANS, NMR?
- What is sedimentation & diffusion coefficient?
 - Globular or unfolded/disordered?
 - Is conformation dependent on salt, pH, ligand concentration, deuteration, tagging, mutations etc?

Questions that can be answered by AUC

- Does sample...
 -self-associate?
 - ...aggregate?
- What is M of sample?
- Does sample bind to a ligand?
- What is stoichiometry of binding?
- What is K_d?
 - Is K_d affected by salt, pH, ligand concentration, deuteration, tagging, mutations etc?
- Is sample affected by crowding?

Advantages of AUC

- In solution
- Non-destructive
- Self-cleaning
- Absolute
- Complementary
- Can analyse (nearly) anything
 - Proteins
 - Nucleic acids
 - Carbohydrates
 - Polymers
 - Colloids
 - Complexes

AUC: a high speed preparative UC with optics

- Choice of 3 instruments
 - Beckman Coulter
 - ProteomeLab XL-A/XL-I
 - Optima AUC
 - https://www.beckman.com/centrifuges/analytical-ultracentrifuges

BECKMAN

COULTER

- Spin Analytical CFA
 - http://www.spinanalytical.com/cfa.php

6.000

Inside the Beckman Coulter XL-I rotor chamber

image from Analytical Ultracentrifuge User Guide Volume 1: Hardware, K. L. Planken & V. Schirf, 2008 (http://www.ultrascan.uthscsa.edu)

Inside the Beckman Coulter XL-I

sample cell (minus casing)

Relationship between data and sample

image from Ralston, 1993

https://www.beckman.com/centrifuges/analytical-ultracentrifuges/proteomelab-xl-a-xl-i

Outline

- AUC background
- How AUC experiments are performed
- Data analysis
- Example: simple model-independent investigation of a hetero-association
- Detergent solubilised systems
- Hydrodynamic bead modelling (HBM)
- Example: oligomerisation of synthetic polyvalent integrin $\alpha_5 \beta_1$ ligands

Sedimentation velocity (SV): shape & homogeneity

Sedimentation equilibrium (SE): mass & self-association

Which optical system?

	Absorbance	Interference	Fluorescence	
Lowest conc	$A_{\lambda} = 0.1$	0.05 mg/ml	100 pM _{fluorescein}	
Dynamic range	2-3 logs	3-4 logs	6-8 logs	
Radial res'n (μm)	20-50	10	20-50	
Scan time (s/cell)	≈ 60	1	≈ 15	
Utility	SelectivitySensitivityNon-dialysables	 Buffer absorbs, sample doesn't Variable extinction coefficient Short column equilibrium Rapid sedimenters 	 Selectivity Sensitivity Non-dialysables Limited sample 	

Sample preparation

- Purify by gel filtration or similar
 - Unless you want to know what is in solution in its entirety
- Estimate concentration
 - Using e.g. NanoDrop
- (Dialyse sample against the desired solvent)
 - Possible problems with detergents
 - Required for interference optics only
- Choose windows
 - Sapphire windows
 - Necessary for interference optics
 - Good for all AUC optics
 - Quartz windows
 - No good for interference

Sample requirements

Sample volume

- SV
 - 360 µl (12 mm pathlength)
 - 90 µl (3 mm pathlength)
- SE
 - 80 µl (2- or 6-channel centrepiece)
 - 20 µl (8-channel centrepiece interference optics only)

Sample concentration

- Absorbance optics: $A_{\lambda} \approx 0.1 1.0$ (12 mm pathlength)
 - λ = 180-800 nm
- Interference optics: typically 0.05-30 mg/ml
- Sample reference
 - Absorbance optics: can be column eluant or dialysate better
 - Interference optics: must be dialysate
- Typical multiplexing: 3 or 7 sample holders ("cells")/run
 - Up to 28 samples per run

SV: radial movement recorded as function of time

Interference optics acquire refractive index data rapidly, independent of chromophores

hemocyanin sedimentation observed with interference optics

SE: data recorded until no change...

Outline

- AUC background
- How AUC experiments are performed
- Data analysis
- Example: simple model-independent investigation of a hetero-association
- Detergent solubilised systems
- Hydrodynamic bead modelling (HBM)
- Example: oligomerisation of synthetic polyvalent integrin $\alpha_5 \beta_1$ ligands

Almost all AUC data analysis software is freely available – here are the most widely used

The RASMB website

- "Reversible Associations in Structural and Molecular Biology"
- http://www.rasmb.org/
- Access to freely available software
- Subscription to AUC-related discussion group
- Schuck lab (SEDFIT, SEDPHAT)
 - http://www.analyticalultracentrifugation.com/default.htm
- Demeler lab (UltraScan III)
 - including US-SOMO
 - http://www.ultrascan.uthscsa.edu/

SV important equations

• The Lamm equation describes SV

$$\frac{\partial c}{\partial t} = -\frac{1}{r} \frac{\partial}{\partial r} \left[r \left(c s \omega^2 r - D \frac{\partial c}{\partial r} \right) \right]$$

s is particle velocity per unit centrifugal field

$$s = \frac{v}{\omega^2 r}$$

Svedberg equation relates s, D and M

$$s = \frac{D}{RT}M(1 - \overline{v}\rho)$$

• Stokes-Einstein equation

$$D = \frac{RT}{N_A f} = \frac{kT}{6\pi\eta R_s}$$

• Combining Svedberg with Stokes-Einstein

$$s = \frac{M(1 - \overline{v}\rho)}{N_A 6\pi\eta R_s} = \frac{M_b}{N_A f}$$

s is influenced by solvent density & viscosity and sample partial specific volume (psv or vbar)

SEDNTERP: Calculation of ρ,η & psv

	Sednterp/Applicat	ions/Sednterp.app,	/Contents/MacOS//Databas	e/sednterp.db	
_ 🖸 Calc	ulate Buffer Density				
Density 1.0318		Density Corrected for Temperature & Isotopes of Water			1.0336
Calc	ulate Buffer Viscosity				
Viscos	ity 1.14100e-02		Viscosity Corrected for	or Temperature	1.78432e-02
	Components]	Buffer Components	Concentration	Units
Sodium c	Sodium carbonate		Sodium chloride	0.15	molar 🗘
Sodium c	Sodium chloride		Sodium phosphate, di-basic	0.20	molar
Sodium c	Sodium citrate			1	
Sodium d	iatrizoate				
Sodium d	ichromate	Compute			
Sodium fe	Sodium ferrocyanide				
Sodium h	Sodium hydroxide				
Sodium m	nolybdate				
Sodium n	itrate				
		Search		pH	
Heav	ry Isotopes of Water				
H₂O	100.00% Volume			Read Comp	position from File
D ₂ O	0.00% Volume			Save Com	position to File
H ₂ O ¹⁸	0.00% Volume			Save Solve	ent to Database
D ₂ O ¹⁸	0.00% Volume				
				C	ancel OK
Boody				0	

http://rasmb.org/sednterp/

Values for vbar

Component	vbar (ml/g)	Comment	
Protein	0.73		
Carbohydrate	0.63	Can be reliably calculated from sequence	
Lipid	1.02	An average value Close to value for solvent, therefore almost invisible	
Detergent	0.7-1.2	Can sediment or float	

SEDFIT c(s) analysis: how many species + s of species I: Load SV data

2: Specify parameters

3: Set meniscus, cell base and analysis limits

4: Run

5: Subtract time and radial invariant noise

6: Fit (with solutions to the Lamm equation)

7: Integrate to obtain estimate of concentration of species and weight-average values

Sum of Lamm equations $0 \le s \le 12$ S discretised by 200

Integrating c(s) peaks reveals region of boundary that contains species

Integrating c(s) peaks reveals region of boundary that contains species

Two-dimensional spectrum analysis (2DSA) of SV data with UltraScan: model independent fitting giving s & M

Important when f/f₀ varies for components

Interacting systems & monodispersity

Rapid monomer-dimer

- SV will show I symmetrical boundary
- Can be confused with monodispersity
- Position will correspond to average of s_{monomer} & s_{dimer}

Slow monomer-dimer

- Indistinguishable from mixture of monomer and dimer
 - Therefore 2 peaks, or asymmetric single peak
- Except if proportion of species depends on loading concentration

Life-time of FAM-GluA2 ATD dimer is significantly longer than that of Dylight488- or EGFP-GluA2 ATD

Zhao H, Lomash S, Glasser C, Mayer ML, Schuck P (2013) PLoS ONE 8(12): e83439. doi:10.1371/journal.pone.0083439

Self-association: "deconvolution" of SE data into individual components

Self-association: SE data are the sum of exponentials

$$\begin{array}{l} A_{r} = \exp[\ln A_{0} + H.M(r^{2} - r_{0}^{2})] & \leftarrow \text{monomer} \\ + \exp[n_{2}\ln A_{0} + \ln Ka_{2} + n_{2}.H.M(r^{2} - r_{0}^{2})] & \leftarrow I - n_{2} \\ + \exp[n_{3}\ln A_{0} + \ln Ka_{3} + n_{3}.H.M(r^{2} - r_{0}^{2})] & \leftarrow I - n_{3} \\ + \exp[n_{4}\ln A_{0} + \ln Ka_{4} + n_{4}.H.M(r^{2} - r_{0}^{2})] + E & \leftarrow I - n_{4} \end{array}$$

Self-association: best model revealed by residuals

2-4

-4

SEDPHAT: species analysis: monomer + heavy

SEDPHAT: species analysis: monomer + "dimer" (both fixed) + heavy

SEDPHAT: species analysis: monomer (fixed) + "dimer" + heavy (both free)

SEDPHAT: Abs + interference, $5.4 - 54 \mu$ M, Kd = 10.8 μ M

SEDPHAT: Abs + interference, $5.4 - 54 \mu$ M, Kd = $7.4 \times 10^3 \mu$ M²

SEDPHAT: Abs + interference, $5.4 - 54 \mu$ M, Kd = $1.7 \times 10^6 \mu$ M³

SE: more than just mass

Ideal monomer

- Globular molecule
- Not highly charged
- Areas of charge neutralised by salt in buffer
- Sediments with monomer mass at most normal concentrations
- Examples: lysozyme, Fab, etc.

Non-ideal monomer

- Asymmetric molecule and/or
- Highly charged
- Areas of charge not neutralised by salt in buffer
- Sediments with mass below that of monomer
- Mass is dependent on concentration
- Examples: myosin, fibrinogen etc.

What is non-ideality ???

Non-ideal monomer data

Outline

- AUC background
- How AUC experiments are performed
- Data analysis
- Example: simple model-independent investigation of a hetero-association
- Detergent solubilised systems
- Hydrodynamic bead modelling (HBM)
- Example: oligomerisation of synthetic polyvalent integrin $\alpha_5 \beta_1$ ligands

Hetero-association example: PDC E3BP:E3 sub-complex

- E3 forms a homo-dimer
- E3BP binds to E3
- Native PAGE & ITC shows 2:1 complex
- Needed confirmation

SV titration: stoichiometry is 2:1

- Expt I: SV of E3 alone; SV of E3BP-DD alone
 - Determine their s
- Expt 2: SV of different E3BP-DD+E3 ratios
 - At what ratio does E3BP-DD peak vanish?
 - This reveals stoichiometry: 2:1
 - Note 2 complex peaks
 - Different conformations
 - s ≈ 6 S peak less compact
 - s ≈ 8 S peak more compact

Mischa Smolle Smolle et al., JBC 281 19771-80 (2006)

SE titration: stoichiometry is 2:1

- Whole-cell weight-average M (M_{w,app}) determined
 - e.g. using species analysis in SEDPHAT with 1 species only
 - No model assumed
- When E3BP-DD is in excess
 - $M_{w,app} < M_{complex}$ until complex is formed
- When E3 is in excess
 - M_{w,app} < M_{complex} because excess E3 lowers M_{w,app}
- ??? Why $M_{w,app} \neq M_{complex}$ at 2:1???
 - Non-ideality

Mischa Smolle Smolle et al., JBC 281 19771-80 (2006)

Outline

- AUC background
- How AUC experiments are performed
- Data analysis
- Example: simple model-independent investigation of a hetero-association
- Detergent solubilised systems
- Hydrodynamic bead modelling (HBM)
- Example: oligomerisation of synthetic polyvalent integrin $\alpha_5 \beta_1$ ligands

Illustrative movie of association of 140 detergent molecules with membrane protein FhaC

Gabel, Lensink, Clantin, Jacob-Dubuisson, Villeret & Ebel, C. (2014). Biophys. J. 107, 185-196.

Detergent solublised proteins are complex mixtures

Sedimentation velocity of proteins solubilised in detergent

Methods 54 (2011) 56-66

Contents lists available at ScienceDirect

Methods

METHODS

journal homepage: www.elsevier.com/locate/ymeth

Review Article

Sedimentation velocity to characterize surfactants and solubilized membrane proteins

Christine Ebel^{a,b,c,*}

^aCEA, Institut de Biologie Structurale, IBS, Grenoble, 41 rue Jules Horowitz, F-38027 Grenoble, France

^bCNRS, UMR 5075, IBS, 41 rue Jules Horowitz, F-38027 Grenoble, France

^c Université Joseph Fourier, IBS, 41 rue Jules Horowitz, F-38027 Grenoble, France

Values for vbar (psv)

Component	vbar (ml/g)	Comment
Protein	0.73	Can be calculated from sequence quite reliably
Carbohydrate	0.63	Can be calculated from sequence quite reliably
Lipid	1.02	An average value Close to value for solvent, therefore almost invisible
Detergent	0.7-1.2	Can sediment or float

Detergent	vbar (ml/g)	Comment
C ₈ E ₅	0.95	
LAPAO	1.002	Doesn't sediment
Octyl-POE	0.997	
Triton X-100		Absorbs @ 280 nm
LDAO	1.13	Floats
DDM	0.82	Aggregation number ≈ 130

SV of AcrB in DDM

- s ≈ 14.9 S for 66% of material (protein-detergent)
- s ≈ 3.3 S (observed from △J) (micelles)

Ebel, Methods (2011) doi: 10.1016/j.ymeth.2010.11.00

Outline

- AUC background
- How AUC experiments are performed
- Data analysis
- Example: simple model-independent investigation of a hetero-association
- Detergent solubilised systems
- Hydrodynamic bead modelling (HBM)
- Example: oligomerisation of synthetic polyvalent integrin $\alpha_5 \beta_1$ ligands

s = deviation from sphericity + hydrodynamic hydration

$$s = \frac{M(1 - \overline{v}\rho)}{N_A f}$$

$$M, f_0$$

$$M, f > f_0$$

$$M, f > f_0$$

$$M, f > f_0$$

$$M, f > f_0$$

Sedimentation coefficient is a constraint for SAS modelling

• For one sphere

$$f_0 = 6\pi\eta_0\sigma$$

• For an assembly of N spheres

 $\mathbf{F}_{i} = -f_{i} \left(\mathbf{u}_{i} - \mathbf{v}_{i}^{0} \right) - f_{i} \sum_{j=1}^{N} \mathbf{T}_{ij} \mathbf{F}_{j}$ $\mathbf{T}_{ij} = \frac{1}{8\pi \eta_{0} R_{ij}} \left(\mathbf{I} + \frac{\mathbf{R}_{ij} \mathbf{R}_{ij}}{R_{ij}^{2}} \right)$

• where

Byron, O., Introduction: Calculation of hydrodynamic parameters in Analytical Ultracentrifugation: Instrumentation, Software and Application (S. Uchiyama, F.Arisaka, W. F. Stafford and T. Laue, editors), 2016, Springer.
Several freely available programs for HBM

- José García de la Torre et al.
 - http://leonardo.inf.um.es/macromol/programs/programs.htm
 - HYDRO++
 - Computes hydrodynamic & other parameters for any bead model
 - HYDROPRO
 - Computes hydrodynamic & other parameters for models constructed from pdb files
 - And many other programs....

Mattia Rocco, Emre Brookes

- http://somo.uthscsa.edu/
- US-SOMO
 - AtoB and SoMo
 - Generates HBMs from pdb files, computes hydrodynamic & other parameters with "realistic" hydration
 - BEST (Sergio Aragon)
 - Boundary element modeling very precise, computationally intensive
 - Zeno
 - Electrostatic-hydrodynamic analogy

Reviewed in Byron (2008) Methods in Cell Biology 84, 327-373

See also Rocco & Byron, Methods in Enzymology (2015) 562, 81-108

Different HM methods have their own pros and cons

Rocco & Byron, Methods in Enzymology (2015) <u>562</u>, 81-108 Rocco & Byron, European Biophysics Journal (2015) <u>44</u>, 417-431

SOMO is a subprogram of UltraScan III

Loaded SOMO Rigid Body and Brownian Dynamics Bead Modeling...

Mattia Rocco/ Borries Demeler/ Emre Brooks Rai et al. (2005) Structure 13 723-34; Brookes et al. (2010) Eur. Biophys. J; Brookes et al., (2010) Macromol. Biosci. http://somo.uthscsa.edu

Select from Simulation drop-down menu

I: Load PDB file

2: File read, checked for compatibility, displayed with RasMol

🗯 Grab File Edit	Capture Window Help		(((:	57% [4]	Fri 11:38	Q	5	Ξ
		SOMO Solution Modeler								
F	'DB Functions:	volume Warning: hybrid_map name missing for hybrid_name C4H1, not added to excluded	٦							
Select Lookup Table	/Applications/ultrascan3/etc/somo.residue	Warning: hybrid_map name missing for hybrid_name C3H0, not added to excluded								
Batch Mode/Cluster Operation		Warning: hybrid_map name missing for hybrid_name O1H0, not added to excluded								
Load Single PDB File	yana Azmi/pdbs/AdhE_D1_predicted_171207.pdb	Warning: hybrid_map name missing for hybrid_name C4H3, not added to excluded								Const .
Please select a PDB Structure:	Model: 1	Warning: hybrid_map name missing for hybrid_name N3H1, not added to excluded								
SAXS/SANS Functions	-	volume Warning: hybrid_map name missing for hybrid_name C4H1, not added to excluded								
Run DMD		volume Warning: hybrid_map name missing for hybrid_name C3H0, not added to excluded								
BD	1	volume Warning: hybrid_map name missing for hybrid_name O1H0, not added to excluded								
Beac	Model Functions:	volume Warning: hybrid map name missing for hybrid name C4H2, not added to excluded								
Bead Model Suffix:	A20R50hiOT / A10R30syOThyG5 / A20R50	volume								
Overwrite existing filenames	Add auto-generated suffix	Warning: hybrid_map name missing for hybrid_name C4H2, not added to excluded								
Build SoMo Bead Model	Build AtoB (Grid) Bead Model	Warning: hybrid_map name missing for hybrid_name C3H0, not added to excluded								
Build SoMo Overlap Bead Model	Build AtoB (Grid) Overlap Bead Model	volume Warning: hybrid map name missing for hybrid name 01H0, not added to evoluded		0.0	XR	asMol - Ad	dhE_D1_pre	licted_	1712	
View ASA Results	Grid Existing Bead Model Visualize Bead Model	volume	<u> </u>	е	Dispi	lay <u>C</u> o	olours <u>O</u>	ptions	5	_
Batch Mode/Cluster Operation	View Bead Model File	varning: hybrid_map name missing for hybrid_name O2H1, not added to excluded volume								
Load Single Bead Model File	not selected	Nadal 1 Chains Nalaqular weight 17695 Daltana Valuma (from what) 59822 8 442								
SAXS/SANS Functions	Automatically Calculate Hydrodynamics	atomic volume 0 A^3 average electron density nan A^-3	15			Strate				
Hydrod	ynamic Calculations:	Model 1 Rg: 2.26 nm			-20					
Calculate RB Hydrodynamics SMI	Calculate RB Hydrodynamics ZENO	Nadali 1 Nalasular weight 47605 Daltana Valuma (fram uhar) 50000 0 440 atamia	11					57		
Show Hydrodynamic Calculations Open Hydrodynamic Calculations File Select Parameters to be Saved Save parameters to file		volume 0 AA3 average electron density nan AA-3	12		1					
		Adne_D1_predicted_1/1207 model 1 47.69 kD, kg 22.58 A, (kg/6.5)^3: 41.92 12.1 %	11		\rightarrow	9922				
BEST Model classifier	Stop Close				~	C A	d was			
Help Config						2°				
VARIA					6					

3: Compute & display bead model

🗯 Grab	File Edit	Capture Window Help				C	🗖 🛜 5	8% [/]• Fri 11	:42 Q	💿 ≔	Ξ
			SOMO Solution Modeler	00) 🛛 🕅 R	asMol - Adhi	_D1_predicte	d_171207_1-A20	.bms		Т
			There are 3351 atoms in 1 chain(s) in this model	File	Display	<u>Colours</u>	<u>Options</u>	Settings	Export		
	PI	DB Functions:	Creating beads from atomic model								
Select Loo	kup Table	/Applications/ultrascan3/etc/somo.residue	Computing ASA via ASAB1								
Batch Mode/Clu	ster Operation										
Load Single	e PDB File	yana Azmi/pdbs/AdhE_D1_predicted_171207.pdb	Return from Computing ASA								
Please select a PDB	Structure:	Model: 1	Anhydrous volume 59506.41 A^3 There are 864 heads in this model before popping								
View/Edit PDB File	PDB Editor										
SAXS/SANS	S Functions		Begin popping stage 1					1			
Run D	DMD		Beads popped 0.								
BC	D		Begin radial reduction stage 1				1000				
	Bead	Model Functions:	Begin popping stage 2								
Bead Model Suffix:		A20R50hiOT-so	Beads popped 0.				7 💭 "				
Overwrite existi	ing filenames	Add auto-generated suffix	Begin radial reduction stage 2			20					
Build SoMo E	Bead Model	Build AtoB (Grid) Bead Model	Begin popping stage 3			1					
Build SoMo Over	lap Bead Model	Build AtoB (Grid) Overlap Bead Model	Reads popped 0								L
View ASA	Results	Grid Existing Bead Model Visualize Bead Model	Begin radial reduction stage 3								
Batch Mode/Clu	ster Operation	View Bead Model File	Finished with popping and radial reduction								
Load Single Be	ad Model File	AdhE_D1_predicted_171207_1	Desharking hands						•		
SAXS/SANS	S Functions	Automatically Calculate Hydrodynamics	Rechecking beads			_		- Selline			4
	Hydrody	mamic Calculations:	3 previously buried beads are exposed by rechecking						3.64		
Calculate RB Hyd	frodynamics SMI	Calculate RB Hydrodynamics ZENO	Finished rechecking beads						A CAR		
Show Hydrodynai	mic Calculations	Open Hydrodynamic Calculations File	Build bead model completed				12			ļ	
Select Paramete	ers to be Saved	Save parameters to file	Visualizing model 1								
BEST	Model classifier	Stop Close					×.		\$*O		
Help	Config						, ,	Y			
ALC: N				Ser M.		1. 24	5	>			
					ADA H	11 2					
		CONTRACTOR OF		Part 1			199999999999999999999999999999999999999				
				1.1			1				1

4: Compute & display hydrodynamic parameters

🗯 Grab File Edit	Capture Window Help		🕓 🔽 🎅 59%	[샷]• Fri 11:45 Q 🌏 😑			
		SOMO Solution Modeler	_D1_predicted_	171207_1-A20.bms			
		Rechecking beads	<u>Options</u>	Settings Export			
PDB Functions:							
Select Lookup Table	/Applications/ultrascan3/etc/somo.residue	3 previously buried beads are exposed by rechecking					
Batch Mode/Cluster Operation		Finished rechecking beads					
Load Single PDB File	yana Azmi/pdbs/AdhE_D1_predicted_171207.pdb	Build bead model completed					
Please select a PDB Structure: Model: 1		Visualizing model 1					
View/Edit PDB File PDB Editor							
SAXS/SANS Functions		Non-default options:					
Run DMD		SOMO Options -> SoMo Overlap Reduction -> Bead Overlap Tolerance: 0	0.002				
BD							
Bea	d Model Functions:	To reset to default: Menu bar -> Configuration -> Reset to Default Config	SOMO Hydro	dynamic Results			
Beed Model Suffix: A20R50hiOT-so			SOMO Hydrod	ynamic Results			
Overwrite existing filenames / Add auto-generated suffix		Begin hydrodynamic calculations	(Water a (Density 1.00194 cP, V	tt 20�C) iscosity 0.998234 g/ml)			
Build SoMo Bead Model Build AtoB (Grid) Bead Model							
Build SoMo Overlap Bead Model	Build AtoB (Grid) Overlap Bead Model	Model 1 will be included	Model:	dhE_D1_predicted_171207-A20R50hiOT-so			
View ASA Results Grid Existing Bead Model Visualize Bead Mo			Method:	SMI			
Batch Mode/Cluster Operation	View Bead Model File	Processing model 1 head count 864 year 0 743	Total Beads in Model:	864			
Load Single Bead Model File	AdhE_D1_predicted_171207_1		Used Beads in Model:	260 4 7695a (04 Da			
SAXS/SANS Functions	Automatically Calculate Hydrodynamics	Using 260 beads for the matrix	Part. Specif. Volume:	0.743 cm/3/g			
Hydro		Supermatrix inversion Cycle 1 of 3	Sedimentation Coefficient s:	3.70e+00 S			
Calculate RB Hydrodynamics SMI	Calculate RB Hydrodynamics ZENO	Supermatrix inversion Cycle 2 of 3	Tr. Diffusion Coefficient D:	7.33e-07 cm/sec^2			
Show Hydrodynamic Calculations	Open Hydrodynamic Calculations File	Supermatrix inversion Cycle 3 of 3	Stokes Radius:	2.93e+00 nm			
Select Parameters to be Saved	Save parameters to file		Frictional Ratio:	1.21			
BEST Model classifier	Stop Close	Calculate hydrodynamics completed	Radius of Gyration:	2.30e+00 nm			
Help Config			Relaxation Time, tau(h):	3.18e+01 ns			
rep coning			Intrinsic Viscosity:	3.77e+00 cm^3/g			
			View ASA Results File	View Bead Model File			
			View Full Hydrodynamics Results Fil				
	COM WARA		Help	Close			

Can also upload DAMs to SOMO

Input psv and M for model

Convert DAM to HBM

🗯 Grab	File Edit	Capture Window Help		1	() 🔽 🤶	66% [4]• F	ri 13:49 Q	三 📀
SOMO Solution Modeler			SOMO Solution Modeler	00	🔿 🔀 RasM	ol - D2_SASD	CK3_fit1_mod	del1_dammif.b	ms
			Production based	File	Display	<u>Colours</u>	<u>Options</u>	<u>Settings</u>	Export
	P	DB Functions:	Rechecking beads						
Select Loc	okup Table	/Applications/ultrascan3/etc/somo.residue	39 previously buried beads are exposed by rechecking						
Batch Mode/Clu	uster Operation		Volume of bead model 29119.5						
Load Singl	e PDB File	not selected	Build bead model completed			259	Cettere.		
Please select a PDE	B Structure:	Model 1 (from bead model)			- 2	2002	ACT &		
View/Edit PDB File	PDB Editor		Non-default options:		`	CCC C	2000		
SAXS/SAN	S Functions		SOMO Options -> SoMo Overlap Reduction -> Bead Overlap Tolerand		1	18000	168.5	7	
Run	DMD		To report to default: Manu har -> Configuration -> Paget to Default Co				Street.	1	
В	D		To reset to default, were bar -> configuration -> Reset to behaut co					222	
	Bead	Model Functions:	Begin hydrodynamic calculations						
Bead Model Suffix:		A10R30syOThyG5-a2bg							
Overwrite exist	ting filenames	Add auto-generated suffix	Model Model 1 (from bead model) will be included						
Build SoMo	Bead Model	Build AtoB (Grid) Bead Model							
Build SoMo Ove	rlap Bead Model	Build AtoB (Grid) Overlap Bead Model							
View AS/	A Results	Grid Existing Bead Model Visualize Bead Model	Processing model 1 bead count 584 vbar 0.743		1				
Batch Mode/Clu	uster Operation	View Bead Model File	Using 471 beads for the matrix				2747 207		
Load Single Be	ead Model File	D2_SASDCK3_fit1_model1_dammif_1	Supermatrix inversion Cycle 1 of 3		a aa	1984	1000	7	
SAXS/SAN	S Functions	Automatically Calculate Hydrodynamics				08.00	19990		
	Hydrody	mamic Calculations:				9292	44900		
Calculate RB Hyd	drodynamics SMI	Calculate RB Hydrodynamics ZENO	Supermatrix inversion Cycle 3 of 3		- 99	111000			
Show Hydrodyna	amic Calculations	Open Hydrodynamic Calculations File	Calculate hydrodynamics completed			C O	1846	9900	
Select Paramete	ers to be Saved	Save parameters to file	Visualizing model 1			48	r.arfif		
BEST	Model classifier	Stop Close							
Help	Config							- ee	
					1				
The second s							******************************		

The state of the s

http://somo.uthscsa.edu

MEN THAT I HAVE

A REAL PROPERTY OF A REAL PROPER

Compute hydrodynamics for DAM-HBM: compare with experimental values

🗯 Grab File Edit	Capture Window Help			🕓 🔽 🎅 66% [ゲン・Fri 13:50	९ 💿 📰		
SOMO Solution Modeler			I - D2_SASDCK3_f	I - D2_SASDCK3_fit1_model1_dammif.bms				
		Supermetric investige Cycle 1 of 2		<u>Colours</u> <u>Op</u>	tions <u>S</u> etting	gs Export		
PDB Functions:		Supermatrix inversion Cycle 1 of 3						
Select Lookup Table	/Applications/ultrascan3/etc/somo.residue	Supermatrix inversion Cycle 2 of 3						
Batch Mode/Cluster Operation		Supermatrix inversion Cycle 3 of 3						
Load Single PDB File	not selected	Calculate bydrodynamics completed		200				
Please select a PDB Structure: Model 1 (from bead model)				86653856	22			
View/Edit PDB File PDB Editor		Visualizing model 1		9000-098				
SAXS/SANS Functions	1	Non-default options:		2000	6669			
Run DMD	1	SOMO Options -> SoMo Overlap Reduction -> Bead O	verlap Tolerance: 0.002		100			
BD	1				A-8900			
Bead	d Model Functions:	To reset to default: Menu bar -> Configuration -> Rese	SOMO Hydroc	dynamic Results				
Bead Model Suffix:	A10R30syOThyG5-a2bg		mamic Results					
Overwrite existing filenames / Add auto-generated suffix		Begin hydrodynamic calculations	t 20�C) scosity 0.998234 g/ml)					
Build SoMo Bead Model	Build AtoB (Grid) Bead Model							
Build SoMo Overlap Bead Model	Build AtoB (Grid) Overlap Bead Model	Model Model 1 (from bead model) will be included	Model:	1_model1_dammif-A10R30s	syOThyG5-a2bg			
View ASA Results	Grid Existing Bead Model Visualize Bead Model		Method:	SMI				
Batch Mode/Cluster Operation	View Bead Model File	Processing model 1 head count 584 year 0 743	Total Beads in Model:	471				
Load Single Bead Model File	D2_SASDCK3_fit1_model1_dammif_1		Molecular Mass:	4.7684e+04 Da				
SAXS/SANS Functions	Automatically Calculate Hydrodynamics	Using 471 beads for the matrix	Part. Specif. Volume:	0.743 cm^3/g				
Hydrod	- Iynamic Calculations:	Supermatrix inversion Cycle 1 of 3	Sedimentation Coefficient s:	3.39e+00 S				
Calculate RB Hydrodynamics SMI	Calculate RB Hydrodynamics ZENO	Supermatrix inversion Cycle 2 of 3	Tr. Diffusion Coefficient D:	6.70e-07 cm/sec^2				
Show Hydrodynamic Calculations	Open Hydrodynamic Calculations File	Supermatrix inversion Cycle 3 of 3	Stokes Radius:	3.20e+00 nm				
Select Parameters to be Saved	Save parameters to file		Frictional Ratio:	1.32	2			
BEST Model classifier	Stop Close	Calculate hydrodynamics completed	Radius of Gyration:	2.81e+00 nm	<u>2</u>			
Help Config			Relaxation Time, tau(h):	4.38e+01 ns	2			
Coning			Intrinsic Viscosity:	5.20e+00 cm^3/g				
			View ASA Results File	View Bead Mode	el File			
			View Full Hydrodyn	amics Results File				
	A DIALASSA		Help	Close				

Outline

- AUC background
- How AUC experiments are performed
- Data analysis
- Example: simple model-independent investigation of a hetero-association
- Detergent solubilised systems
- Hydrodynamic bead modelling (HBM)
- Example: oligomerisation of synthetic polyvalent integrin $\alpha_5 \beta_1$ ligands

Example: Oligomerisation of synthetic polyvalent integrin $\alpha_5 \beta_1$ ligands

MRGSHHHHHHGMASGLDSPTGIDFSDITANSFTVHWIAPRATITGYRIRHHPEHFSGRPREDRVPHSRNSIT LTNLTPGTEYVVSIVALNGREESPPLIGQQSTVSDVPRDLEVVAATPTSLLISWDAPAVTVRYYRITYGETG GNSPVQEFTVPGSKSTATISGLKPGVDYTITVYAVTGRGDSPASSKPISINYRTSKLEPKSSDTPPGSPRSP EPKSSDTPPGSPRSGRIKQLEDKIEELLSKIYHLENEIARLKKLIGELEDKIENLGC

- $\alpha_5 \beta_1$ ligands used to immobilise cells on surfaces via
 - 9th type III FN domain synergy site (PHSRN)
 - IOth type III FN domain RGD site
- $\alpha_5 \beta_1$ ligand oligomers facilitate increased binding
- Oligomerisation accomplished via 5 heptad repeats based on GCN4 leucine zipper
 - I/L placed variously @ a and d positions to promote di-, tri- & tetramerisation
- Thiol-linked immobilisation to surface achieved via C-terminal Cys
- Question: do the ligands oligomerise as designed?

Construction of hydrodynamic bead models

MRGSHHHHHHGMASGLDSPTGIDFSDITANSFTVHWIAPRATITGYRIRHHPEHFSGRPREDRVPHSRNSIT LTNLTPGTEYVVSIVALNGREESPPLIGQQSTVSDVPRDLEVVAATPTSLLISWDAPAVTVRYYRITYGETG GNSPVQEFTVPGSKSTATISGLKPGVDYTITVYAVTGRGDSPASSKPISINYRTSKLEPKSSDTPPGSPRSP EPKSSDTPPGSPRSGRIKQLEDKIEELLSKIYHLENEIARLKKLIGELEDKIENLGC

- From vector (including His-tag) too short for e.g. SWISSMODEL
- FN III 9-10 domain pair homology model (SWISSMODEL)
- Synthesised "missing beads"
- Coiled-coil (42 a.a.) SWISSMODELs generated for underlined segment

Oligomerisation of synthetic polyvalent integrin $\alpha_5 \beta_1$ ligands - AUC SV: c(s) reveals complex composition

AUC SV + DTT: c(s) composition simplified

Outline

- AUC background
- How AUC experiments are performed
- Data analysis
- Example: simple model-independent investigation of a hetero-association
- Detergent solubilised systems
- Hydrodynamic bead modelling (HBM)
- Example: oligomerisation of synthetic polyvalent integrin $\alpha_5 \beta_1$ ligands

AUC tutorials

- Setting up and running AUC experiments
 - Tutorial paper
 - Lebowitz, J., M.S. Lewis, and P. Schuck, Modern analytical ultracentrifugation in protein science: A tutorial review. Protein Science, 2002. 11(9): p. 2067-2079.
 - AUC user guide from Demeler lab
 - http://www.uslims.uthscsa.edu/AUCuserGuideVolume-I-Hardware.pdf
- Data analysis
 - Using SEDFIT & SEDPHAT
 - http://www.analyticalultracentrifugation.com/default.htm
 - Using UltraScan
 - http://www.ultrascan.uthscsa.edu

AUC tutorials

- Alexander Bepperling
 - Aggregation analysis and beyond analytical ultracentrifugation in the biopharmaceutical industry
 - https://www.youtube.com/watch?v=liERbI-Xz4c
- Borries Demeler
 - Advances in sedimentation analysis
 - https://www.youtube.com/watch?v=zuAwWOJZtkM
- Chad Brautigam
 - Exploring the stoichiometry of macromolecular complexes using multi signal sedimentation velocity analytical ultracentrifugation
 - https://www.youtube.com/watch?v=ea6tvKF8zkA
- John Burgner
 - Quantitative determination of reaction stoichiometry, interaction energies, and something else
 - https://www.youtube.com/watch?v=ivRodzqWjS8
- Andrew Herr
 - Analytical ultracentrifugation as a complementary technique for structural analysis of proteins and macromolecular complexes
 - https://www.youtube.com/watch?v=Kw72fyaiQsw

Questions?

Get More Funny Stuff @ funnyasduck.net

would it have Windows!?

